Bribery in Balanced

 Knockout Tournaments- Christine Konicki,

Virginia Vassilevska Williams
ABSTRACT
Balanced knockout tournaments comprise a common format for sporting competitions, elections, and pairwise decision-making. We investigated the computational complexity of arranging the tournament's initial seeding and bribing players to lose, guaranteeing a favorite player's victory.
Question 1: How do we bribe and seed a tournament described by a monotonic matrix (a case for which the hardness of seeding without bribery is unknown) without making the bribes obvious?
Question 2: In a tournament generated by the Condorcet Random (CR) model, if we wanted to always have a handful of the best players "in our pocket," what is the lower bound on how many we would need so that we could efficiently find a winning seeding?

METHODS

1. Developed an NP-hardness reduction from an instance of the tournament fixing problem with bribery (BTFP) to an instance of Vertex-Cover
2. Proved a lower bound on how many players to bribe for a tournament with an easy-to-find winning seeding using Chernoff bound, structural conditions for quickly finding seedings, CR model.

(1) Finding a winning seeding for a monotonic

 tournament is NP-complete if we can bribe players.

Matrix P pre-bribery. The bribes are indicated by the colored cells

(2) For almost all n-player tournaments generated by

 the CR model, if one bribes the best $6 \mathrm{c} \log (n)$ players to lose to any player v^{*}, a winning seeding for v^{*} can
found in polynomial time.

- Stronger players tend to bea weaker players; monotonic tournament is more realistic.
- We bribe to yield an ε-monotonic matrix, nearly identical to the original; fixing this new tournament is known to be NP-complete.
- Benefits tournament organizer, as the bribes are difficult to detect.

- When we bribe these top players, the tournament can be divided into sets $\mathrm{H}, \mathrm{A}, \mathrm{I}$, and $\left\{v^{*}\right\}$ where:
- \mathbf{v}^{*} is the winner and a king,
- A contains all the players v^{*} beats,
- H contains all the players with ranks between $6 c$ $\log (n)+1$ and $12 c \log (n)$ not in A, and
- I contains all the other tournament players.
- This is the condition required for efficiently finding a winning seeding.

