Bribery in Balanced Knockout Tournaments

Christine Konicki, Virginia Vassilevska Williams

ABSTRACT

- Balanced knockout tournaments comprise a common format for sporting competitions, elections, and pairwise decision-making. We investigated the computational complexity of arranging the tournament's initial seeding and bribing players to lose, guaranteeing a favorite player's victory.
- Question 1: How do we bribe and seed a tournament described by a monotonic matrix (a case for which the hardness of seeding without bribery is unknown) without making the bribes obvious?
- Question 2: In a tournament generated by the Condorcet Random (CR) model, if we wanted to always have a handful of the best players "in our pocket," what is the lower bound on how many we would need so that we could efficiently find a winning seeding?

METHODS

- Developed an NP-hardness reduction from an instance of the tournament fixing problem with bribery (BTFP) to an instance of Vertex-Cover
- Proved a lower bound on how many players to bribe for a tournament with an easy-to-find winning seeding using Chernoff bound, structural conditions for quickly finding seedings, CR model.

Massachusetts Institute of Technology

(<u>1</u>) Finding a winning seeding for a monotonic tournament is NP-complete if we can bribe players.

	v^*	v_j	e_j	$f_j^{r'}$	$h_{e_j}^{t'}$	$h_{f_j^{r'}}^{t'}$	$h^{t'}_*$
v^*	-	$1 - \epsilon$	$1 - \epsilon$	$1-\epsilon$	$1 - \epsilon$	$1 - \epsilon$	$1-\epsilon$
v_i	ε	$\begin{array}{l} 1 - \epsilon \text{ if } i < j, \\ \epsilon \text{ o.w.} \end{array}$	$1-\epsilon$	$1-\epsilon$	$1-\epsilon$	$1-\epsilon$	$1 - \epsilon$
e_i	e	e	ϕ	$1 - \epsilon$	$1 - \epsilon$	$1 - \epsilon$	$1-\epsilon$
f_i^r	ϵ	ϵ	e	ϕ	ϕ	ϕ	$1-\epsilon$
$h_{e_i}^t$	ϵ	ϵ	ϵ	ϕ	ϕ	ϕ	$1-\epsilon$
$h_{f_i^r}^t$	ϵ	ϵ	ϵ	φ	ϕ	ϕ	$1-\epsilon$
h_*^t	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϕ

Matrix P pre-bribery. The bribes are indicated by the colored cells

	v^*	v_j	e_j	$f_j^{r'}$	$h_{e_j}^{t'}$	$h_{f_j^{r'}}^{t'}$	$h_*^{t'}$
v^*	-	1	$1 - \epsilon$	$1 - \epsilon$	$1 - \epsilon$	$1 - \epsilon$	1
v_i	0	1 if $i < j$, 0 o.w.	1 if v_i covers e_j , $1 - \epsilon$ o.w.	1	$1-\epsilon$	$1-\epsilon$	1-
e_i	ε	0 if v_j covers e_i , ϵ o.w.	ϕ	1	$\begin{array}{l} 1 \text{ if } i = j, \\ 1 - \epsilon \text{ o.w.} \end{array}$	$1-\epsilon$	1-
f_i^r	ε	0	0	ϕ	ϕ	$ \begin{array}{l} 1 \text{ if } f_i^r = f_j^{r'}, \\ \phi \text{ o.w.} \end{array} $	1-
$h_{e_i}^t$	e	ε	0 if $i = j$, ϵ o.w.	ϕ	ϕ	ϕ	1-
$\boldsymbol{h}_{f_i^r}^t$	e	ϵ	ϵ	$\begin{array}{l} 0 \text{ if } f_i^r = f_j^{r'}, \\ \phi \text{ o.w.} \end{array}$	ϕ	ϕ	1-
h^t_*	0	ε	e	e	e	ϵ	ϕ

Matrix P' post-bribery. The bribes are indicated by the colored cells

(2) For almost all *n*-player tournaments generated by the CR model, if one bribes the best *6c log(n)* players to lose to any player v*, a winning seeding for v* can found in polynomial time.

- Stronger players tend to beat weaker players; monotonic tournament is more realistic.
- We bribe to yield an ε-monotonic matrix, nearly identical to the original; fixing this new tournament is known to be NP-complete.
- Benefits tournament organizer, as the bribes are difficult to detect.

- When we bribe these top players, the tournament can be divided into sets H, A, I, and {v*} where:
- \circ **v**^{*} is the winner and a king,
- A contains all the players v* beats,
- H contains all the players with ranks between 6c log(n) + 1 and 12c log(n) not in A, and
- I contains all the other tournament players.
- This is the condition required for efficiently finding a winning seeding.