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Abstract

In this thesis, we analyze the problem of fixing balanced knockout tournaments by
arranging the tournament’s initial seeding to guarantee one player’s victory. We
characterize the problem’s hardness through a variety of perspectives.

First, we investigate the computational complexity of fixing the tournament while
bribing players to lose matches they would typically win. We give a model of bribery in
which one is given a pairwise comparison matrix whose entries contain the probability
of the row player beating another column player in a match, where the organizer’s
ability to bribe players is constrained by the cost of each bribe and a fixed budget, and
where the tournament seeding can be manipulated arbitrarily. We show that it is NP-
hard to find a bribery scheme and a seeding under which a given player always wins
the tournament, even when the original pairwise comparison matrix is monotonic; the
hardness of fixing a tournament in this case without bribery is open. We also show
that when the probability matrix is binary, for almost all n-player inputs generated
by the Condorcet random model, if one bribes a specific number of the ”top” O(log n)
players, then there is an efficiently constructible winning seeding for any player.

Next, we investigate the relationship of the deterministic case of the tournament
fixing problem to other NP-complete problems. We demonstrate the futility of con-
structing a reduction to it from certain well-known graph problems, showing why
the features of these problems are ultimately incompatible. We analyze the blowup
of the NP-hardness reduction to the problem from a restricted version of 3SAT and
use it to give a direct NP-hardness reduction from 3SAT. Finally, we apply parame-
terized complexity to the deterministic tournament fixing problem, giving a simpler
algorithm that matches the runtime of the fastest known algorithm, using the size of
the input tournament graph’s feedback arc set as a parameter.

Thesis Supervisor: Virginia Vassilevska Williams
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Background and Motivation

Knockout tournaments are a popular format for determining a winner from several

choices. First, a specific permutation of the choices called the seeding is selected.

Then, the tournament proceeds in sequential rounds. Each successive round uses a

restricted subset of the current seeding, which contains only the alternatives that

were not eliminated in previous rounds. The alternatives are then paired together:

the first with the second, the third with the fourth, and so on. This ordered matching

is known as a pairwise comparison between the alternatives. Only the winners of the

current round’s pairwise comparisons move on to the next round. Only one alternative

reaches the final round, winning the tournament.

The knockout tournament structure is popular in sports competitions such as

Wimbledon or the World Cup (where the alternatives are teams or players) and in

social choice, as in the binary cup voting rule. Due to the sports connection, alterna-

tives are often referred to as players, and pairwise comparisons as matches that the

players win or lose. The tree that results from the sequential pairwise comparisons

is known as the bracket. The popularity of these tournaments stems primarily from

their lucidity, as the structure is simple and efficient once the players are arranged.

More importantly, other social choice mechanisms can unintentionally give the play-

ers an incentive to attempt to ”game the system” by engaging in unwanted behavior;
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knockout tournaments have no such bug. Players in knockout tournaments are not on

teams, so there is no reason for the players to work together. At best, they would be

competing against each other in the penultimate round, which is not mutually bene-

ficial as there is no reward for the loser who made it that far and then lost. Moreover,

players who lose on purpose in a single match will be eliminated immediately instead

of receiving a lower rank or a lower score, so there is no incentive for the players not

to try their best.

Within computational social choice, several works investigate how much power a

tournament organizer has in influencing the outcome of the tournament by selecting

the initial seeding. This is the agenda control problem for knockout tournaments,

also called the Tournament Fixing Problem (TFP): Can a self-interested manipulator

set the initial seeding so that their favorite player has the best chance of winning?

Stated more formally:

Definition 1.1.1. The Tournament Fixing Problem (TFP) takes as input a ra-

tional number δ ∈ [0, 1], a favorite player i∗ ∈ [n], and an n× n matrix P that gives

for every two players i, j ∈ [n], the probability Pi,j that i is preferred over j (i.e. that

i beats j); and asks whether or not there exists a seeding s for which i∗ wins the

balanced knockout tournament with probability at least δ?

The computational problem of fixing tournaments is interesting because its com-

plexity can be used to show how difficult it really is for the organizer to find a per-

mutation that would yield the outcome he desired, should he wish to underhandedly

influence the results ahead of time. By extension, this demonstrates how much power

the organizer has over who ultimately wins the entire tournament.

Tournaments in which n is a power of 2, known as balanced knockout tournaments

and pictured in Figure 1-1, comprise a common format for sporting competitions, elec-

tions, and pairwise decision-making. In this thesis, we investigate the computational

complexity of arranging the tournament’s initial seeding using several techniques and

problem variations.
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Figure 1-1: A balanced knockout tournament with n = 8 players and favorite player i∗ = 4. The
results by round are displayed as a binary tree.

1.2 Terminology and Notation

All tournaments in this thesis contain n players, where n is a power of 2. Balanced

knockout tournaments adopt the structure of a complete binary tree. The arrange-

ment of the leaf nodes represents the seeding, and players that correspond to sibling

leaf nodes compete against each other in a match. The winner of each match moves

up in the tree to the next round. The winner of the tournament is the player who

reaches the root node. The potential match outcomes are described by a probabilistic

pairwise comparison matrix P ∈ Qn×n
[0,1] where Pi,j denotes the probability that player

i will beat player j in a match, and Pi,j + Pj,i = 1. P can be used to compute the

probability that a player i wins the tournament using dynamic programming given

any initial seeding. We define various restrictions applied to P in this thesis.

Definition 1.2.1. A probabilistic matrix P is monotonic if it satisfies the following

conditions ([14], [15], [20]):

1. Pi,j ≥ Pj,i∀(i, j) : i ≤ j,

2. Pi,j ≤ Pi,(j+1)∀(i, j).

Definition 1.2.2. A probabilistic matrix P is ε-monotonic for ε ≥ 0 if it satisfies

the following more relaxed conditions ([26]):

1. ∀(i, j) : i ≤ j, Pi,j ≥ Pj,i;

2. ∀(i, j, j′) : j′ > j, Pi,j ≤ Pi,j′ + ε.
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Definition 1.2.3. A probabilistic matrix P is deterministic if ∀(i, j) : i 6= j, Pi,j ∈

{0, 1}. A deterministic probabilistic matrix can also be represented as a tournament

graph by putting a directed edge from player i to player j whenever Pi,j = 1 for each

(i, j).

Table 1.1 summarizes some of the notation used to refer to players and their

neighbors according to deterministic matrix P . Another common concept applied to

tournament graphs is the notion of a king.

Notation
Nout(v) = {u : Pv,u = 1}
Nin(v) = {u : Pv,u = 0}

out(v) = |Nout(v)|, outX(v) = |Nout(v) ∩X|
in(v) = |Nin(v)|, inX(v) = |Nin(v) ∩X|

Table 1.1: Summary of the notation used in this paper for tournaments with deterministic P , i.e.
tournament graphs.

Definition 1.2.4. A player u is a king if for every other player v in the tournament,

either Pu,v = 1 or Pu,w = 1 and Pw,v = 1 for some w in the tournament.

1.3 Outline

In Chapter 2, we introduce into TFP the ability of the organizer to bribe players

to lose to each other. We formulate a model of this bribery in which one is given

a matrix with the entries equal to the probability of each row player beating the

pairwise column player. Using this matrix, one can bribe players to decrease their

probability of beating other players at a cost, without exceeding a budget, and where

the tournament seeding can be manipulated arbitrarily.

We show that it is NP-hard to determine a bribery and a seeding under which a

given player is guaranteed to win the tournament, even when the initial probability

matrix is monotonic, and the probability matrix after bribery is ε-monotonic and very

close to the initial one. In contrast, it is not known whether it is NP-hard to find

a winning seeding for a given player without bribery when the probability matrix is
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monotonic. We also consider the case where the input is deterministic; that is, the

probability matrix is binary, and one can bribe any player to assuredly lose to any

other player. We show that for almost all possible n-player inputs generated by a

well known model due to Condorcet, if one bribes the “top” O(log n) players, then

there is an efficiently constructible seeding for which any player wins.

For the remaining chapters, TFP will be used specifically to refer to the case of

deterministic TFP. In Chapter 3, we examine the relationship of TFP to other NP-

complete problems. We show that the construction of a reduction from CLIQUE

or VC to TFP is infeasible and very unlikely to appear in the future. We summarize

recent past work demonstrating why deterministic TFP is NP-complete using 3SAT2

and analyze the implications of its blowup in problem size. We also create a direct

reduction from 3SAT to TFP and then analyze its efficiency.

In Chapter 4, we examine the application of parameterized complexity to TFP. We

outline our motivations for using parameterized complexity to reframe the runtime

of the fastest parameterized algorithm for solving TFP. We then summarize this

algorithm and give a more elegant one that matches the runtime. We also explain the

hindrances indicating that this runtime is unlikely to drop below 2k log knO(1), where

n is the number of nodes in the tournament graph and k the size of the feedback arc

set in the input tournament graph.

In Chapter 5, we conclude and discuss several paths for future work on this prob-

lem and its variants.
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Chapter 2

Bribery in Knockout Tournaments

2.1 Introduction

In this section, we consider the TFP problem when the tournament organizer is also

allowed to bribe players. Notions of bribery in knockout tournaments have been

studied before, e.g. by [13], [17], [19], and [22]. The results in this thesis extend what

is known in novel ways.

We first formulate a new bribery version of TFP, extending a notion from [17].

The motivation of our model is as follows. Suppose we know from our input matrix

P the probability Pi,j that row player i will beat column player j. Suppose also that

at a cost Ci,j to the organizer, column player j will intentionally play worse, and

will lose to row player i with probability Ai,j > Pi,j, where A and C are also n × n

matrices. Now, as in TFP, we want our favorite player i∗ to win the tournament. We

have a budget B of how much money we want to spend on bribes. We want to bribe

without exceeding the budget so that we can find a seeding for which i∗ wins with

probability at or above a given threshold δ, with the matches playing out according to

the pairwise winning probabilities resulting from the bribes. Let us call this problem

the Tournament Fixing Problem with Bribery (BTFP), which will be defined more

formally in subsection 2.2.1. On input (i∗, P, A,B,C, δ), BTFP returns “yes” if and

only if there is a bribery strategy and a seeding so that i∗ wins with probability at

least δ.

25



It is not hard to see that BTFP is NP-hard. All we have to do is reduce TFP to

it: Given an instance (i∗, P, δ) of TFP, create an instance of BTFP (i∗, P, A,B,C, δ)

by setting B = 0, A = P , and C arbitrarily. This transformation still works if P is

structured. For instance, BTFP is NP-hard even if P is ε-monotonic due to the result

of Vu, Altman, and Shoham (2009) [25].

We give a hardness result for BTFP for the case when P is monotonic. This does

not follow immediately from the hardness of TFP, however, as TFP is not known to

be NP-hard when P is monotonic. The monotonic case models the real world, and

hence it is of interest since beating a stronger player is indeed harder than beating a

weaker one. However, because a manipulator performing bribes would eschew getting

caught, the matrix resulting from the bribes P ′ should ideally be almost monotonic

and nearly identical to P .

Our first theorem is that BTFP is NP-complete, even if P is monotonic and no en-

try of the resulting probability matrix P ′ after bribery differs from the corresponding

entry of P by more than an arbitrarily small threshold ε. The last assertion implies

that P ′ must be ε-monotonic.

Next, we consider the case where for every pair of players i and j, the manipulator

knows which one of them will win in a match. This corresponds to having P be a

binary matrix. Bribery problems in this case of deterministic P have been proposed

in the past in various formats. One version showed that given a seeding, one could

efficiently find a set of matches such that a favorite player could win the tournament

if the intended winner of each match according to P lost [22]. One could easily view

this set of thrown matches as a set of bribes. [13] similarly applies polynomial-time

operations to an existing winning seeding that was too obviously rigged to find a

new ordering and a new set of bribes. However, since finding a winning seeding is

typically a hard problem, it is much more interesting to incorporate bribery into

the computational process of finding a winning seeding instead of working from an

existing one.

Another case for deterministic P , Bribery-TFP, was proposed by Kim and Vas-

silevska W. [17]: Given P , a budget B, and i∗, determine if one can bribe at most
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B players to each lose a prescribed match so that i∗ wins the tournament. Notice

that Bribery-TFP is the special case of BTFP in which P is binary, and the entires

of both A and C are all 1’s. [17] showed that this bribery problem is NP-hard when

B = (1−ε) log n for any constant ε > 0. This is essentially tight since log n bribes will

always suffice to fix i∗ to be the winner: For any initial seeding and in each successive

round, bribe the player that i∗ is supposed to play.

However, there is an issue with this approach to bribing. The players that are

bribed truly depend both on i∗ and the given seeding, so the tournament outcome

might look a bit suspicious, yielding the problem that [13] works to correct retroac-

tively. Avoiding this problem in the first place would be preferable. Moreover, if we

bribed some players to make i∗ win for one seeding but decide later that we want

some other player to win instead, we might have to bribe anew. It would be great if

we could have a handful of players “in our pocket.” With these players guaranteed

to succumb to any bribe, neither the initial seeding nor the choice of which player

we want to win will matter. We can just give the players in our pocket a match to

throw, and then our favorite player will win. The notion of bribing only an elite set of

players to throw matches in a tournament has been explored by [13], but the players

that comprise that elite set vary depending on which player is the favorite and on the

structure of P .

There is also an issue with the hardness results for both [13] and [17]. In most

applications, the input matrix P is not arbitrary: For instance, stronger players tend

to beat weaker players. Perhaps one can exploit this natural structure of P to bribe

better. Indeed, our second result shows that if one assumes that P is generated from

a standard generative model that follows this pattern (originally due to Condorcet),

then one can always bribe the top O(log n) players so that regardless of which i∗ we

pick and for almost all P generated this way, one can efficiently find a winning seeding

for i∗ if the bribed players throw a match of our choosing. This result is intriguing.

One can imagine for instance the tournament organizer paying the registration fees

for the top O(log n) players, with the implicit understanding that if he asks, they

have to return the favor and throw a match. Using this strategy, the tournament
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organizer can make even the weakest player win.

The Condorcet model is very natural: Given some “error” probability p > 0, there

is a total ordering of the players 1 to n, where players with lower numbers are stronger

than players with higher numbers. Additionally, for each i < j, a weaker player j

beats a stronger player i with (small) probability p ≤ 1/2; otherwise, the stronger

player beats the weaker one with probability 1− p.

To gain some intuition of why a result such as this might be possible, imagine

that p = 0. It follows that if i < j, then i always beats j. In this case, imagine

that we bribe the top log n players to lose to the very weakest player n if they play

against n for any round in the tournament. Then, n is a “superking” (as defined in

[24]) because for every player j that n cannot beat, there are log n players that n

beats and who beat j. [24] showed that for every superking, there exists an easily

computable seeding for which the superking wins the tournament. When p > 0, the

top log n players lose some matches with probability p, and we need to bribe slightly

more than log n players to make sure that the weakest player can win. We provide a

tight bound on just how many players we need to bribe.

2.2 NP-Completeness of BTFP

2.2.1 Bribery Model

We define a model for bribing players competing in a balanced knockout tournament.

It is assumed that for any pairwise match, the probability of one player winning

against the other is known, regardless of whether or not a bribe was made. We are

given the following as inputs:

• A set of n players S = [n].

• A favorite player i∗ ∈ S.

• A probabilistic pairwise comparison matrix P ∈ Qn×n
[0,1] .

• A matrix A ∈ Qn×n
[0,1] where Ai,j denotes the probability that row player i will
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beat column player j in a match that j has been bribed to throw. For all (i, j),

Pi,j ≤ Ai,j ≤ 1.

• A budget B ∈ Z+, the total amount of money that can be spent on bribing

players.

• A cost matrix C ∈ Zn×n
+ where Ci,j denotes how much column player j must be

bribed to agree to throw the match to row player i.

• A threshold probability δ ∈ Q[0,1].

Note that when a player j is bribed to lose to a player i, the probability given by

Ai,j is used instead of the original probability given by Pi,j to gauge who wins the

match. The complement probability Pj,i is likewise replaced with 1−Ai,j. We assume

that we do not have to make two bribes in order to change both entries in P . With

this model, we define the problem:

Definition 2.2.1. The Tournament Fixing Problem with Bribery (BTFP):

“Given S, i∗, P, A,B,C, and δ as in our model above, decide whether there exists a

seeding and bribery choices for a balanced knockout tournament described by P such

that i∗’s probability of winning the tournament can be raised above δ by bribing specific

players according to C without exceeding budget B.”

Note that there are two specific cases of P in which we apply the bribery model. In

the monotonic bribery model for BTFP, P is strictly monotonic. In the deterministic

bribery model for BTFP, P and A are deterministic, and for all (i, j), Ai,j = Ci,j = 1.

2.2.2 Hardness Proof

We state and prove the complexity of BTFP. It is not hard to show NP-completeness

when P is ε-monotonic. Set A = P , B = 0, and C = 0n,n. This makes BTFP

equivalent to an instance of the tournament fixing problem without bribery, which

has been proven to be NP-complete when P is ε-monotonic [26]. However, it is not

known if TFP is NP-complete for monotonic P , so we have to find another approach in

this case. We show that BTFP is NP-complete if P is restricted to being monotonic
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by demonstrating how to bribe so that the resulting matrix P ′ after bribery is ε-

monotonic.

Theorem 2.2.2. BTFP is NP-complete even if P is monotonic and the matrix P ′

after bribery is ε-monotonic.

Proof. It is easy to see that BTFP ∈ NP. A possible solution would consist of an

initial seeding and denotations for what probabilities in P would be replaced by

probabilities in A, depending on which of the associated matches involved bribes. A

polynomial-time verification algorithm would consist of computing i∗’s new proba-

bility of winning the tournament with dynamic programming, comparing the result

with δ, and checking that the total bribery cost does not exceed B.

To prove that BTFP is NP-hard, we reduce from Vertex Cover (VC): ”Given a

graph G = (V,E) and an integer k, is there a subset V ′ ∈ V such that |V ′| ≤ k and

every edge in E has at least one vertex in V ′ ?” We will show that one can choose an

initial seeding for a tournament described by P with players that must be bribed so

that a special player i∗ will always win if and only if G has a vertex cover of size at

least k. Our proof is based on past work proving that TFP is NP-complete when P

is ε-monotonic by means of a reduction from VC [26].

Given an instance (G, k) of VC, we construct an instance of BTFP with the fol-

lowing players:

• Vertex players {vi ∈ V } where |V | = n. Also, a special new player v0 /∈ V

which does not cover any edges.

• Favorite player v∗ /∈ V , newly created.

• Edge players {ei ∈ E} where |E| = m.

• Filler players for vertex players: For each vi ∈ V ∪{v∗, v0} and each r ∈ N such

that 0 < r ≤ dlog(n− k)e, we have k filler players {f r
vi
}.

• Filler players for edge players: For each ei ∈ E and each r ∈ N such that

dlog(n− k)e < r ≤ dlog(n− k)e+ dlog(m)e, there are k filler players {f r
ei
}.

30



• Holder players for edge players: For each ei ∈ E, there are 2dlog(n−k)e − 1 asso-

ciated edge holder players htei .

• Holder players for filler players: For each filler player f r
vi

or f r
ei

that must be

placed at round r (denoted f r
i ), there are 2r − 1 holder players htfr

i
.

• Holder players for v∗. There are 2N−1 special holder players in the tournament

where N = dlog(n− k)e+ dlog(m)e+ dlog(k + 1)e+ 1.

Let P be as in Table 2.1, and let A be the matrix that is the same as P ′ in Table

2.2 above the diagonal and the same as P below the diagonal. Let W be the set of

all players. Set B to be |W |2, which is the size of P . For each pair (i, j) with i < j

(above the diagonal) in which P and P ′ (from the tables) differ, set the associated

cost Ci,j = 1. For each remaining pair, set the associated cost Ci,j = B + 1.

The colored cells in the aforementioned tables denote the bribes that can be made

to the column player to give the row player a quantitative advantage in the match.

If all such bribes are made, P ′ is an ε-monotonic matrix of winning probabilities.

v∗ vj ej fr
′

j ht
′

ej
ht

′

fr′
j

ht
′

∗

v∗ − 1− ε 1− ε 1− ε 1− ε 1− ε 1−ε

vi ε
1−ε if i < j,
ε o.w.

1− ε 1− ε 1− ε 1− ε 1−ε

ei ε ε φ 1− ε 1− ε 1− ε 1−ε
fri ε ε ε φ φ φ 1−ε
htei ε ε ε φ φ φ 1−ε
htfr

i
ε ε ε φ φ φ 1−ε

ht∗ ε ε ε ε ε ε φ

Table 2.1: Matrix P pre-bribery. The bribes are indicated by the colored cells

Lemma 2.2.3. (←): If G has a vertex cover of size k, we can construct a seeding

and players that must be bribed so that v∗ will win with probability 1 using substitute

probabilities from A that form an ε-monotonic P ′.

Proof. Given a graph G with a vertex cover V ′ of size k, we can create a seeding for

which v∗ wins with probability 1. As mentioned earlier, Table 2.1 gives the initial

monotonic winning probabilities of P . The colors denote the entries that will be
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v∗ vj ej fr
′

j ht
′

ej
ht

′

fr′
j

ht
′

∗

v∗ − 1 1− ε 1− ε 1− ε 1− ε 1

vi 0
1 if i < j,
0 o.w.

1 if vi covers
ej , 1− ε o.w.

1 1− ε 1− ε 1−ε

ei ε
0 if vj cov-
ers ei, ε o.w.

φ 1
1 if i = j,
1− ε o.w.

1− ε 1−ε

fri ε 0 0 φ φ
1 if fri = fr

′

j ,
φ o.w.

1−ε

htei ε ε
0 if i = j, ε
o.w.

φ φ φ 1−ε

htfr
i
ε ε ε

0 if fri = fr
′

j ,
φ o.w.

φ φ 1−ε

ht∗ 0 ε ε ε ε ε φ

Table 2.2: Matrix P ′ post-bribery. The bribes are indicated by the colored cells

changed as a result of bribery. Note that ε ≤ φ ≤ 1 − ε. We bribe players so that

our original matrix of winning probabilities P becomes the matrix P ′ containing our

preferred probabilities given by the matrix in Table 2.2, with the same colors as before

denoting the bribes. Again, note that ε ≤ φ ≤ 1−ε. All colored entries can be bribed

within our budget. Now, after we perform these bribes, the matrix P ′ from Table 2.2

is exactly the matrix that is obtained in [26] in the reduction from VC to TFP with

an ε-monotonic P . Thus, we can just refer to the argument in [26] that shows how

to construct a seeding so that v∗ wins.

Now we get to the crux of our proof, that in order for v∗ to win with probability 1,

the bribes chosen above must be made, and a small vertex cover must be recovered.

Lemma 2.2.4. (→): If there is a bribery strategy and initial seeding such that v∗

wins with probability 1, we can find a vertex cover in G of size k.

Proof. We will show that all bribes in Tables 2.1 and 2.2 are necessary for v∗ to win

with probability 1. First, we examine the filler players f r
i and their associated holder

players htfr
i
, proving that for v∗ to win the tournament, the filler players must advance

until round r exactly, at which point they are eliminated.

Claim 2.2.5. Every filler player f r
i can survive with probability 1 only as far as round

r.
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Proof. Suppose that a filler player f r
i survives until round t with probability 1. Then

in each of the rounds q < t, f r
i must have been matched to some holder player

hqfr
i

with probability 1 since this is the only matching that guarantees victory for

f r
i . Once bribes have been made, the holder players do not have any guaranteed

victories according to Table 2.2. The only way for a holder player designated for f r
i

to be matched against f r
i in round q with probability 1 is if the holder player won a

subtournament of size 2q−1 against a subset of all of the holder players htfr
i
. However,

since the total number of holder players designated for filler player f r
i is only 2r − 1

at the most, neither q nor t can exceed r. Therefore, filler player f r
i can only advance

as far as round r in the tournament with probability 1.

Claim 2.2.6. If v∗ wins with probability 1, then every filler player f r
i must survive

until at least round r with probability 1.

Proof. The only player that beats a holder player htfr
i

with probability 1 is f r
i . So in

order for v∗ to win the tournament with probability 1, all such holder players must

be eliminated in a subtournament that f r
i wins with probability 1. However, there

are 2r − 1 holder players htfr
i
, which means that f r

i must win a subtournament of size

at least 2r and therefore survive with probability 1 at least until round r.

Combining Claims 2.2.5 and 2.2.6, we see that each filler player f r
i survives exactly

until round r with probability 1 and conclude that its holder players must have been

bribed to lose to f r
i , as in cells (f r

i , h
t′

fr′
j

) and (htfr
i
, f r′

j ) of Table 2.2. Next, we examine

the edge players and their associated holder players.

Claim 2.2.7. If v∗ wins with probability 1, then all edge players must survive at least

until round dlog(n− k)e with probability 1.

Proof. Using logic similar to the proof of Claim 2.2.6, ei must win with probability

1 a subtournament that contains all its 2dlog(n−k)e−1 holder players, as it is the only

player that can eliminate them all with probability 1. Thus, ei must survive at least

until round dlog(n− k)e with probability 1.
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Claim 2.2.7 allows us to conclude that the edge holder players must have been

bribed to lose to the edge players, as in cells (ei, h
r′
ej

) and (hrei , ej) of Table 2.2. Now,

we examine v∗, the vertex players, and the filler players.

Claim 2.2.8. If v∗ wins with probability 1, then after round dlog(n − k)e, at most

k + 1 vertex players have survived with probability 1.

Proof. According to Claim 2.2.7, if v∗ wins with probability 1, then all edge players

must advance at least until round dlog(n− k)e. So if a vertex player vi survives until

then with probability 1, then in every previous round r, vi could not have played

against any of the edge players. vi could not have played against v∗ either because

v∗ would lose with nonzero probability. vi also could not have played against filler

players f q
i where q ≥ r, since these players must survive round r with probability

1. vi could not have played against filler players f q
i where q < r in round r either

since vi would beat f q
i with probability 1, eliminating f q

i too late according to Claims

2.2.5 and 2.2.6. Therefore, for each round r in the first dlog(n − k)e rounds of the

tournament, vi must be matched with either another vertex player or a filler player

f r
i intended for that round specifically.

In the first round, we begin with n vertex players. In each round r, at most k

vertex players can be matched against the k filler players f r
i , so the rest must be

matched against each other. Let n′ be the number of players that advanced to round

r−1 from the previous round. At least half of the vertex players matched against each

other will be eliminated in each round, so the number of vertex players advancing to

round r from the previous round is at most k + n′

2
. Therefore, at the end of round

dlog(n− k)e, we are left with at most k + n−k
2dlog(n−k)e = k + 1 vertex players.

Now, we show that at most k of the k + 1 remaining vertex players form a vertex

cover. From Claim 2.2.8, we know that during the first dlog(n − k)e rounds of the

tournament, these k+ 1 players were matched against either another vertex player or

a filler player. The special vertex v0 must be part of this set since it beats both vertex

players and filler players with probability 1. In order for v∗ to win the tournament with

probability 1, all of the edge players must be eliminated with probability 1. Excluding
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v0, the remaining k vertex players are the only set of players in the tournament that

(1) have survived through round dlog(n − k)e and (2) will win against edge players

with probability 1 if the vertices they represent are incident to the edges that the edge

players represent. It follows that if v∗ wins with probability 1, each edge must be

incident to at least one of the k vertices remaining. Therefore, these k vertex players

must form a vertex cover of G.

Therefore, BTFP is NP-hard when P is monotonic and P ′ is ε-monotonic.

2.3 Bribing a Few Top Players Is Sufficient

Here we consider the deterministic version of the tournament bribery problem: Given

a favorite player i∗ and a binary probability matrix T (Ti,j ∈ {0, 1} and Ti,j = 1−Tj,i,

∀i, j ∈ [n]), we want to bribe a small number of players to each lose a single well chosen

match at cost 1 each, and to find a seeding for which i∗ wins. (We use T instead

of P , since we will be interchangeably referring to T as a tournament graph and a

matrix.) Here we show that for a natural generative model of binary tournaments,

there exist O(log n) players (the “top” ones) so that for all i∗ and almost all T , if one

bribes these players, then i∗ can always be made the winner.

The generative model we work with is the Condorcet Random model (CR Model).

Given a probability p ≤ 1/2 (possibly depending on n), an n×n matrix T is generated

for the players {1, . . . , n} so that for all i < j, independently, Ti,j = 1 with probability

1 − p and Ti,j = 0 with probability p [5] [18] [23] [24]. Intuitively, this means that a

stronger player almost always beats a weaker player except with small probability p.

Figure 2-1 visualizes this model as a directed graph.

Our main theorem is

Theorem 2.3.1. Let n be a power of 2, c > 1, let p ≤ 1/2 be arbitrary, and let

R = 2(1 +
√

2)2 ≈ 11.657. Then, for at least a 1 − 1/nc−1 fraction of all possible

n× n matrices T generated by the CR Model with probability p, and all players i∗ ∈

{1, . . . , n}, if one bribes players 1, . . . , Rc log n to lose to i∗, there is an efficiently
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Figure 2-1: An example of a directed graph generated by the Condorcet Model for n players. The
edges on the bottom result with small probability p, and the edges on the top result with probability
1− p.

constructible seeding for which i∗ wins.

Proof. We want to point out that the constant R in this theorem is not optimized; in

the next subsection, we show how to bring it down to less than 6 for large enough n.

We begin with a theorem from [24].

Theorem 2.3.2. Consider a tournament graph T on n players V with K ∈ V . Let

A = Nout(K) and B = V \ (A ∪ {K}). Suppose that for every j ∈ B, inA(j) ≥ log n.

Then there exists an efficiently computable winning seeding for K.

Our proof will show that no matter what p is, for every player i∗ that we could

pick, if we bribe the set of players ranked 1, . . . , Rc log n to lose to i∗, then i∗ fulfills

the conditions of the theorem above with high probability. We will prove the theorem

for the weakest player i∗ = n. The theorem easily follows for all players.

Additionally, we know from past work that if p ≥ c
√

log n/n for large enough

constant c, the theorem holds even without bribery [24], and thus it suffices to prove

that the theorem holds when p < c
√

log n/n.

We will also use the following well known fact which follows from Chernoff bounds:

Fact 2.3.3. Suppose X1, . . . , Xm are Bernoulli random variables which are 1 with

probability q and 0 otherwise. Then for all C > 0,

Pr[
m∑
i=1

Xi ≥ qm− 2
√
C
√
qm] ≥ 1− e−C .
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In our application of this fact, we will be able to set C = c lnn for constant c > 1,

so that e−C = 1/nc

Having set i∗ = n, suppose now that we bribe players 1, . . . , Rc log n. Let T be

the resulting tournament graph after generation via the CR model and after bribery.

Let A be the set of players i∗ can beat according to T , and let B = V \A \ {i∗}. We

will show that for any player j ∈ B, if R ≥ 2(1 +
√

2)2, then inA(j) ≥ log n with high

probability. It follows that if Theorem 2.3.2 is true after bribing players to lose to i∗,

then Theorem 2.3.1 must be true.

Claim 2.3.4. Let j ∈ B. With probability at least 1− 1/nc, inA(j) ≥ log n.

Proof. Due to the bribery, i∗ now beats the top Rc log n players, which makes them

part of A. We will consider how many of these players beat j. This bounds inA(j)

from below. By Fact 2.3.3, with probability at least 1− 1/nc, the number of players

among the top Rc log n that beat j is at least

Q := (1− p)(Rc log n)− 2
√
c lnn

√
(1− p)Rc log n

≥ c log n
(
R(1− p)− 2

√
R(1− p)

)
≥ log n

(
R(1− p)− 2

√
R(1− p)

)
.

since c > 1.

We would like to pick R so that R(1−p)−2
√
R(1− p) ≥ 1, allowing us to bound

Q so that Q ≥ log n, meaning at least log n of the top Rc log n players beat j. Now

we solve for R by first setting x =
√
R(1− p). This simplifies our equation, giving

us x2 − 2x− 1 ≥ 0. The solutions to the quadratic equation are x = 1±
√

2; putting

x in terms of R again, and disregarding the negative solution for x, we now have

√
R(1− p) ≥ 1 +

√
2.

Solving this new equation, we get a closed formula for R:

R ≥ (1 +
√

2)2/(1− p).
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Substituting p = 1/2, we see that R ≥ 11.657 approximately; for p < 1/2, the lower

bound for R is even tighter.

As a check, if we set R = 2(1 +
√

2)2, as p ≤ 1/2, 1/(1− p) ≤ 2, we get that

R ≥ (1 +
√

2)2/(1− p)

=⇒ R(1− p)− 2
√
R(1− p) ≥ 1,

and thus Q ≥ log n. This proves the claim.

We can conclude the proof of our theorem via a union bound: the probability that

there is some j ∈ B for which inA(j) < log n is at most |B|/nc ≤ 1/nc−1. Thus with

probability at least 1 − 1/nc, i∗ satisfies the conditions of the theorem, and one can

always efficiently find a seeding for which i∗ wins the tournament.

2.3.1 Optimizing the Number of Top Players

We now prove our claim that R (as given in Theorem 2.3.1) can be reduced to less

than 6 for sufficiently large n, meaning we can reduce the number of top players we

expect to bribe by approximately half.

Theorem 2.3.5. Let n be a power of 2, c > 1, let p ≤ 1/2 be arbitrary, and let

R ≈ 5.92. Then, for at least a 1 − 1/nc−1 fraction of all n × n T generated by the

CR model with probability p, and all players i∗ ∈ {1, . . . , n}, if one bribes players

1, . . . , Rc log n to lose to i∗, there is an efficiently constructible seeding for which i∗

wins.

Proof. We begin with a theorem from Kim et al. [18] which is a more stringent

variation on Theorem 2.3.2.

Theorem 2.3.6. Consider a tournament graph T on n players V where K ∈ V is

a king. Let A = Nout(K) and B = V \ (A ∪ {K}) = Nin(K). Suppose that B is a

disjoint union of three (possibly empty) sets H, I, J such that

1. |H| < |A|,
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2. inA(i) ≥ log n for all i ∈ I, and

3. out(j) ≤ |A| for all j ∈ J .

Then there is a winning seeding for K that can be computed in polynomial time.

We will show that for any player i∗ ∈ [n] that we could pick, if we bribe players

1, . . . , 6c log n to lose to i∗, then i∗ fulfills the conditions of the theorem above with

probability at least 1 − 1/nc−1. More specifically, i∗ is a king, and we can define H,

A, I and J so that by the theorem above, i∗ can be made to win. It follows that if

Theorem 2.3.6 is true after bribing players to lose to i∗, then Theorem 2.3.5 must be

true.

We will again apply Fact 2.3.3 to set C = c lnn for constant c > 1, so that

e−C = 1/nc. We will also prove Theorem 2.3.5 for the case where i∗ is the weakest

player and p < c
√

log n/n, so the theorem easily follows for all players and for all

p < 1/2.

Suppose that we pick i∗ = n and we bribe players 1, . . . , 6c log n. Let T be the

resulting tournament graph after generation via the CR model and after bribery. We

will first show that the first condition of Theorem 2.3.6 is true following the bribery.

Claim 2.3.7. With probability at least 1− 1/nd for d ≥ 1, i∗ is a king in T .

Proof. As a result of the bribery, i∗ beats the top 6c log n players. Consider any

player j ∈ {6c log n + 1, . . . , n − 1}. The probability that none of the top 6c log n

players beat j (meaning each of these players’ outgoing edges to j was flipped) is

p6c logn. Applying a union bound, we see that the probability that there exists some

j ∈ {6c log n + 1, . . . , n − 1} such that none of the top 6c log n players beat j is at

most np6c logn. We assumed that p < c
√

log n/n, and so

np6c logn < n(c log n/n)3c logn ≤ n/n2 logn < 1/nd,

for any d ≥ 1.
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We now divide all players other than i∗ into the sets H, A, I, and J . Since A

consists of all players that i∗ can beat according to T , A clearly contains the top

6c log n players. Let H contain all players in the ordering {1 + 6c log n, . . . , 12c log n}

that are not already in A. It follows that all of the ”second-best” 6c log n players

after the first 6c log n players are either in A or in H, satisfying the first condition

of Theorem 2.3.6. Finally, set I = V \ (A ∪ H ∪ {v∗}) and J = ∅. Our partition is

depicted in Figure 2-2.

Figure 2-2: An n-player directed graph generated by our random model, post-bribery. i∗ = n,
denoted by the green player on the far right. The players in set A are red, the players in set H
are blue, and the players in set I are purple. The red edges denote the winning matches for v∗,
regardless of whether they flipped due to a bribe or the randomness of Condorcet.

Now consider a player i ∈ I. Clearly i > 12c log n. We will show that inA(i) ≥

log n with high probability, satisfying the second condition of Theorem 2.3.6. Since

J = ∅, proving that the first two conditions of the theorem are satisfied is sufficient.

Claim 2.3.8. Let i ∈ I. With probability at least 1− 1/nc, inA(i) ≥ log n.

Proof. We will only consider how many players among the first 2ac log n are both

beaten by i∗ and beat i. We will try to minimize a and show that for large enough

n, a = 6 suffices.

The top ac log n players are all beaten by i∗. From our proof of Claim 2.3.4, with

probability at least 1− 1/nc, the number of top ac log n players that beat i is at least

Q1 := (1− p)ac log n− 2
√
c lnn

√
(1− p)ac log n ≥ .

c log n
√

1− p(a
√

1− p− 2
√
a).

Now we consider the next ac log n players. The probability that one of these

players is beaten by i∗ and beats i is p(1− p). Applying the same logic, we see that
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with probability at least 1 − 1/nc, the number of players from this group that both

are beaten by i∗ and beat i is at least

Q2 := p(1− p)(ac log n− 2
√
c lnn

√
p(1− p)ac log n ≥ .

c log n
√

(1− p)(ap
√

(1− p)− 2
√
ap).

It follows that with high probability, the total number of players from among the

top 2ac log n players that i∗ beats and that beat i is

Q1 +Q2 ≥ c log n
√
a(1− p)

(
(1 + p)

√
a(1− p)− 2(1 +

√
p)
)
.

We want Q1 +Q2 ≥ c log n, so we set

√
a(1− p)((1 + p)

√
a(1− p)− 2(1 +

√
p)) ≥ 1.

Setting x =
√
a(1− p), we can now solve the following simpler result: (1 + p)x2 −

2(1 +
√
p)x− 1 ≥ 0. The solutions to the quadratic equation are

x =
(1 +

√
p)±

√
2 + 2p+ 2

√
p

1 + p
.

Putting x back in terms of a and p again, and disregarding the negative solution for

x, we now have

x =
√
a(1− p) ≥

(1 +
√
p) +

√
2 + 2p+ 2

√
p

1 + p
,

and hence

a ≥

(
(1 +

√
p) +

√
2 + 2p+ 2

√
p

(1 + p)
√

1− p

)2

.

The right hand side above is a growing function of p in the interval between 0 and

1/2. Since we have assumed that p < c
√

log n/n, it follows that p < 7c
√

log n/n. For

large enough n, this is smaller than 0.0001, yielding approximately a ≥ 5.92; however,
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it suffices to set a = 6. This proves the claim.

We can conclude the proof of our theorem via a union bound as before. The

probability that there is some i ∈ I for which inA(i) < log n is at most |I|/nc ≤

1/nc−1. Thus with probability at least 1 − 1/nc, i∗ satisfies the conditions of the

theorem, and one can always efficiently find a seeding for which i∗ wins the tournament

by bribing the top 6c log n players.
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Chapter 3

NP-Completeness of Deterministic

TFP

3.1 Preliminaries

In this section we examine the relationship of deterministic TFP to other NP-complete

problems, and the features of the problem that bode well or ill for reductions. We first

restate our definition for TFP, which will be used as an abbreviation for the problem

of fixing a deterministic tournament for both this chapter and the following chapter.

Definition 3.1.1. A deterministic knockout tournament plays out as a balanced

binary tree given an initial seeding of the set of players N = {1, 2, . . . , n} where

n = 2m for some integer m. In the first seeding, the n sibling leaf nodes play a match

against each other at level m of the tree. The winner of each match ascends the tree to

the next round at level m−1. The winner of the tournament is the player who reaches

the tree’s root node at level 0. Match results are governed by a pairwise comparison

matrix P where Pij ∈ {0, 1} for all players i, j ∈ N . If Pij = 1, then row player i

beats column player j in a match. Additionally, Pij + Pji = 1, as in the probabilistic

case.

In this chapter, the computational question of interest is whether or not there

exists an initial seeding for which a particular player can win a tournament where
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the winner of each possible match is known with certainty ahead of time according

to the dictations of P . We state the problem more formally:

Definition 3.1.2. The Tournament Fixing Problem (Deterministic) (TFP):

Given a set of players N = [n], a deterministic pairwise comparison matrix P , and

a favorite player i∗ ∈ N , does there exist an initial seeding σ for N for which i∗ wins

the tournament?

3.2 Reducing CLIQUE or VC to TFP Is Intractable

We show that two well-known NP-complete graph problems are surprisingly incom-

patible with the problem of fixing a deterministic tournament, which can be rephrased

as a graph problem as we saw in section 2.3. Since one of the inputs of an instance

of TFP is a directed graph, it is tempting to reduce other NP-complete graph prob-

lems to TFP in order to reinforce its complexity. What makes the construction of

a polynomial-time reduction from either one of these problems to TFP very difficult

(and untenable so far) is that one problem relies on the relationships within a certain

group of nodes while another relies on a specific permutation of nodes. The transla-

tion of the former to the latter causes an exponential blowup in the number of nodes,

which violates a cornerstone of proving NP-completeness. We demonstrate this for

each problem investigated to show the untenability of a poly-time reduction. Recall

the definition of Vertex Cover from section 2.2.

Definition 3.2.1. VERTEX COVER(VC): Given a graph G = {V,E} and an

integer k, does there exist a subset C ∈ V such that |C| ≤ k and C covers E?

Building a reduction is a conundrum of translating the affirmative characteristics

within an instance of one problem into the different but still affirmative characteris-

tics within an instance of another problem. In this case, VC requires that the vertices

in the cover collectively are connected to the entire edge set E through one or both

endpoints. Translating this relationship into a deterministic tournament would re-

quire that players represent both the vertices and edges in the graph. For example,
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a vertex player in the cover could eliminate an edge player that it covers in a tourna-

ment match. This would require that vertex players not in the cover be eliminated

before the edge players could be eliminated. It would also require that the vertex

players in the cover all make it to a particular round, meaning the tournament must

be comprised of at least k subtournaments. However, unlike the ε-monotonic com-

parison matrix used to represent VC that was described in section 2.2, this matrix

completely eliminates the uncertainty that Claims 2.2.5 through 2.2.8 relied upon in

order to prove one direction of the reduction.

This issue poses a serious hindrance when we attempt to prove that a vertex cover

of size k can be found if a favorite player such as i∗ wins with probability 1. So

if a vertex player survives until a particular round with probability 1, for example,

it is possible that it advanced that far through the tournament by eliminating edge

players too early or by eliminating anoher vertex player that it should not have. It

is also possible also that one vertex player in the cover could be eliminated by an

edge player that it did not cover so that the edge player could advance to a particular

round. In other words, there are ways for i∗ to win that are not contingent upon the

existence of a vertex cover of size k in the instance of VC.

Although TFP and VC are both graph problems, they are ultimately incompatible

for a poly-time NP-hardness reduction because it is impossible to guarantee (1) that

the edge players made it to a certain point without eliminating vertex players in the

cover and (2) that the vertex players in the cover made it to a certain point without

eliminating each other. Furthermore, the scope of the tournament requires several

additional holder and filler players for the edge players, the vertex players, and the

favorite player. Forcing deterministic relationships between these players so that an

instance of TFP can be constructed makes it impossible to guarantee that a vertex

cover can be found if and only if the favorite player wins the tournament, at least not

without an exponential size blowup.

A reduction was attempted for the known NP-complete problem CLIQUE as well.

We define the problem formally.
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Definition 3.2.2. CLIQUE: Suppose that a set S of a given graph G = {V,E} form

a clique if each vertex in S is connected to every other vertex with an edge. Given G

and an integer k, does there exist a clique in G of size k?

It is clear that CLIQUE requires that each vertex in the clique be connected to

every other vertex in the clique by way of an edge. The problem also requires that

no other vertex outside of the clique is connected to all of the clique vertices through

an edge; otherwise, the clique would have size k + 1. It seems reasonable that the

resulting tournament graph for an instance of TFP would have one node to represent

each vertex in the CLIQUE input graph, for a total of |V | nodes in the tournament

graph. However, we must translate the affirmative relationships between the nodes

in the CLIQUE graph that yield an accepted instance of the problem into a valid

tournament graph that a certain favorite player wins. This process would require

many more nodes. For example, one might intuitively require two additional nodes

for each edge (u, v) so that u could eliminate one copy of the edge in a match and v

could eliminate the other in a different match. This adds 2|E| nodes to the tournament

graph. However, this would require the elimination of (1) all other edges and (2) all

other vertices not in the clique so that only the ones that comprise the clique would

remain. A deterministic tournament makes it impossible to distinguish between an

edge being eliminated by a vertex not in the clique and an edge being eliminated by

a vertex in the clique, so this would not work in a polynomial-time reduction.

One might also design a tournament graph containing a single node for each vertex

in the CLIQUE graph and multiple copies of the edges. In order for i∗ to win, the

graph might require each of the clique vertices to eliminate a single copy of the edge

connecting it to the other clique vertices, a process which would take at least k rounds.

The directed graph may also be set up so that a favorite player wins if and only if all k

of the clique vertices make it to a particular round, and all the others are eliminated.

Both of these cases require that these vertices each win a subtournament of at least k

rounds, requiring a total of approximately k · 2O(k) nodes to be added to the directed

graph. The remaining |V |−k vertices and their edges must also be eliminated, which

further adds to the now too-high complexity
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Ultimately, this attempt to represent a relationship between a group of nodes in

the CLIQUE problem with a directed graph defined by binary edge relationships that

manifests as a tournament is very difficult to represent with just a polynomial number

of nodes as a function of |V |, |E|, and k. This is because a group relationship like

this tends to manifest itself in a tournament as a series of rounds, which causes the

reduction blowup to increase dramatically since the number of rounds is a logarithmic

function of the total number of nodes in the tournament graph. Furthermore, the

tournament graph is constructed with an order in mind for how the matches should

play out and when certain players should be eliminated over the course of the game.

A problem like CLIQUE ignores order altogether, so reducing CLIQUE to a problem

like TFP where the correct permutation of the matches is critical for an affirmative

instance adds an unforeseen amount of complexity. Despite both TFP and CLIQUE

being graph problems, they ultimately are incompatible for a poly-time NP-hardness

reduction.

3.3 NP-Completeness of TFP

We now summarize the proof demonstrating that TFP is NP-complete [3].

Lemma 3.3.1. TFP is NP-complete.

Proof. It is easy to see that TFP is in NP. To show its NP-hardness, one can reduce to

it from 3SAT2, which is a variant of the 3SAT problem in which every literal appears

no more than twice. Given a 3SAT2 instance F = (X,C) where X = {x1, . . . , x|X|}

is the set of variables and C the set of clauses, we summarize how to construct an

instance of TFP where a favorite player who can win the tournament via some initial

seeding if and only if F is satisfiable.

The instance of TFP has a set of players N of size n, where n is the smallest power

of 2 that is greater than or equal to 32 · |X|. The tournament instance will have a

total of log n ≥ 5 rounds. N can be grouped into a series of disjoint sets and gadgets.

We briefly enumerate each of them:
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• Player set M = {m1, . . . ,mk} where k = n
16

and m1 is the favorite player who

is ultimately intended to win the tournament. In order for this to happen, all

players from M must make it to the fifth round.

• Choice gadget set GX = {G1, G2, . . . , G|X|}

• Clause/garbage gadget set GCG = {G|X|+1, G|X|+2, . . . , G2|X|}

• Filler gadget set GF = {G2|X|+1, G2|X|+2, . . . , Gk}

• Superset S = {S1, . . . , S|X|} where each set Sj corresponds to the variable xj of

the 3SAT2 instance, Sj = {Sxj
, Sx̄j

, s∗j}, and |Sxj
| = |Sx̄j

| = 3.

Figure 3-1 depicts the directed graph relating the elements of M . It represents

a recursive spawning process so that m1 wins the subtournament when the nodes in

level 3 are seeded from left to right, in ascending order m1,m2, . . . ,mk. The full proof

demonstrates that this is the only way for m1 to win the tournament, which means

that all k players in M must make it to the fifth round so that they can be seeded in

this fashion [3].

Figure 3-1: The recursive spawning process for the case k = 8, where the players in level 3 are
arranged in ascending order m1, . . . ,m8 from left to right. If the players are seeded according to
this permutation, then m1 will win the tournament.

Figure 3-2 depicts the directed graph relating the players between different gadgets

and sets. Unless indicated otherwise, all players from sets with a higher index will

beat elements from sets with a lower index. In particular, S can be divided into

the set of special players {s∗1, s∗2, . . . , s∗|X|} and the set of players Sp that interact

with players in the choice and garbage gadgets. For j > j′, elements from Sxj
and
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Sx̄j
beat elements from Sxj′

and Sx̄j′
, and each element s∗j is beaten by all players

{s∗j′ | j + 1 ≤ j′ ≤ |X|}.

Figure 3-2: The global structure of the tournament, comprising all n players and divided by the
aforementioned sets and gadgets. All vertical arrows not shown point down, and all horizontal arrows
not shown point from right to left. The arrows accompanied by an asterisk indicate an exception:
Every player mi beats exactly four players in the gadget Gi, and some players in Gi beat a subset
of players in Sp [3].

Each choice gadget consists of player mj, all of Sj, and all ten elements of Gj for

1 ≤ j ≤ |X|. The pairwise comparison graph for these players is shown in Figure 3-3,

and it is structured in such a way that it is possible for mj to win a subtournament

composed of all elements in the choice gadget except for two elements of either Sxj

or Sx̄j
, as depicted in Figure 3-4. The full proof demonstrates that this is the only

way in which mj can reach the fifth round in a tournament ultimately won by m1.

Each clause/garbage gadget consists of player mj and the thirteen elements of Gj

(two of which are denoted by c/g) for |X|+ 1 ≤ j ≤ 2|X|. The pairwise comparison

graph for these players is shown in Figure 3-5. For each clause of the 3SAT2 instance

ci ∈ C, one of the players denoted c/g is associated with clause ci while all the other

players c/g are garbage players. All players shown in the figure are beaten by all

players in S except for (1) all garbage players beating all players from Sp, and (2)

players associated with clause ci beat all players from either the set Sxj
or the set Sx̄j

if xj or x̄j occcurs in clause ci, respectively. The clause gadget is designed so that

mj can win a subtournament containing all players in the gadget with the addition
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Figure 3-3: Directed graph relating the players in choice gadget Gj . All vertical arrows not shown in
the graph point down, and all horizontal arrows not shown point from right to left. Players grouped
together in ovals have the same relationship with players outside the ovals [3].

Figure 3-4: The subtournament for choice gadget j in the case where xj = True [3].

of a compatible player in Sp for both c/g players. The full proof demonstrates that

this is the only way for mj to reach the fifth round in order for m1 to win the entire

tournament.

Each filler gadget consists of mj and the fifteen elements of Gj for 2 · |X| + 1 ≤

j ≤ k. The directed graph for these players is shown in Figure 3-6. Note that for all

j ∈ [k], player mj beats exactly four players not in the set M . This manifests in the

following three cases:

1. If 1 ≤ j ≤ |X|, then the associated gadget is a choice gadget. The 16-player

subtournament allowing mj to reach the fifth round thus consists of mj, the

players of Gj, and the players of Sj excluding two elements of either Sxj
∪ {s∗j}

or Sx̄j
∪ {s∗j}.
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Figure 3-5: Directed graph relating the players within a clause/garbage gadget through the afore-
mentioned recursive spawning process. All vertical arrows not shown in the graph point down, and
all horizontal arrows not shown point from right to left [3].

2. If |X|+ 1 ≤ j ≤ 2 · |X|, then the associated gadget is a clause/garbage gadget.

The 16-player subtournament allowing mj to reach the fifth round thus consists

of mj, the players of Gj, and one additional player from the set Sp for each

clause/garbage player c/g to beat.

3. If 2 · |X|+1 ≤ j ≤ k, then the associated gadget is a filler gadget. The 16-player

subtournament allowing mj to reach the fifth round thus consists of mj and the

players of Gj.

Figure 3-6: Directed graph relating the players in a filler gadget through the aforementioned recursive
spawning process. All vertical arrows not shown in the graph point down, and all horizontal arrows
not shown point from right to left [3].

The complete proof demonstrates through induction that for each of these sub-

tournaments, mj makes it to the fifth round if and only if a specific seeding is used.

Likewise, once all players mj make it to the fifth round, the aforementioned seeding

depicted in Figure 3-1 must be followed so that m1 wins. It also demonstrates that

a draw in which each player mj ∈ M wins a 16-player soubtournament with exactly

the players stated exists if and only if the 3SAT2 instance is satisfiable, satisfying the

conditions for a correct NP-hardness reduction.
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3.4 Size Blowup for 3SAT2 ≤m TFP

In this section, we give a lower bound on the blow-up of the size of the reduction

described in the previous section. The blow-up comes from the size of the minimal

feedback arc set within the new instance of TFP relative to the size of the input

F = (X,C).

Theorem 3.4.1. The reduction from 3SAT2 to TFP cannot be accomplished with a

size blowup tighter than O(|X|2).

Proof. Within each of the |X| clause/garbage gadgets, there are either one or two

garbage players g which collectively beat all players from Sp. This means that there

are O(|X|) outgoing edges from each of the O(|X|) garbage players to the players in

Sp. Because the remaining players in Sp beat all other players to the left of the c/g

players as depicted in Figure 3-5, several cycles are created within this gadget. The

size of the minimal feedback arc set therefore is at least quadratic in size. The filler

and choice gadgets each have blowups of size O(|X|), so the tightest bound we can

place on the reduction’s blowup is O(|X|2).

If we were able to solve TFP in 2o(n) time, then this quadratic blowup means that

3SAT2 would have to be solvable in 2o(n) time. However, since 3SAT has no such

algorithm according to the exponential time hypothesis, neither does 3SAT2, and an

algorithm solving TFP therefore must require at least 2O(n) time.

3.5 Reducing 3SAT Directly to TFP

We now show how to expand this reduction in order to create a polynomial-time

reduction from the general version of 3SAT to TFP.

Theorem 3.5.1. 3SAT can be reduced directly to TFP in polynomial time.

Proof. Figures will be updated. Let L be the maximum number of times that any

of the literals appears in our instance F = (X,C) of 3SAT. We have to modify each

choice gadget Gj so that the number of players and rounds reflects the case where
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L 6= 2. More specifically, we must structure the subtournament ultimately won by mj

so that it consists of mj, the players of Gj, and the players of Sj excluding L elements

of either Sxj
or Sx̄j

. We do this by recursively breaking down L into two types of

5-round subtournaments: one that excludes two elements of either Sxj
or Sx̄j

, which

is already demonstrated in Figure 3-3; and one that excludes exactly one element of

either Sxj
or Sx̄j

, as demonstrated in Figure 3-7. The tree that results from the latter

subtournament is depicted in Figure 3-8.

Figure 3-7: Directed graph relating some of the players in choice gadget Gj . All vertical arrows
not shown in the graph point down, and all horizontal arrows not shown point from right to left.
If xj = True, then one player from the set {s1

xj
, s2

xj
} will be unused in the resulting choice gadget

subtournament and be used instead in the clause gadget subtournaments. If xj = False, then one
player from the set {s1

x̄j
, s2

x̄j
} will be unused in the resulting choice gadget subtournament and be

used instead in the clause gadget subtournaments.

Figure 3-8: The subtournament for choice gadget j in the case where xj or x̄j appears at most once
in F (L = 1) and xj = True.
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In the case where L = 3, we would combine a 5-round subtournament that ul-

timately excludes either two elements of Sxj
or two elements of Sx̄j

with a 5-round

subtournament that excludes either a single element of Sxj
or a single element of

Sx̄j
, for a total of 3 elements excluded from Sxj

or Sx̄j
. Note that the single element

excluded by one subtournament cannot be either of the two elements excluded by

the other subtournament. The complete directed graph is given in Figure 3-9. The

resulting trees indicating how the tournament plays out round by round are given

in Figure 3-10. This makes sense, since the assignment xj = 1 or xj = 0 must be

consistent for all four appearances of the literal. Then, mj would ultimately win a

6-round subtournament.

Similarly, if L = 7, we would combine three 5-round subtournaments that each

exclude 2 elements of the same set with one 5-round subtournaments that exclude a

single element of that same set, for a total of 7 elements excluded from Sxj
or 7 ele-

ments excluded from Sx̄j
. Player mj would ultimately win a 7-round subtournament.

The complete directed graph is given in Figure 3-11, and the resulting tournament

tree is depicted in Figures 3-12 and 3-13. As a final example, if L = 13, we would

combine five 5-round subtournaments that each exclude 2 elements of the same set

with three 5-round subtournaments that each exclude a single element of that same

set, for a total of 13 elements excluded from Sxj
or Sx̄j

. Player mj would ultimately

win an 8-round subtournament.

We now give a brief proof of correctness for this reduction, relying heavily on what

we know from the proof given in section 3.3 [3].

Theorem 3.5.2. There exists a draw such that m1 wins the tournament if and only

if the 3SAT instance is satisfiable.

Proof. We already know that by a simple extension of the 3SAT2 reduction’s proof

of correctness that m1 can win the tournament if and only if all the players from M

reach round dlogLe + 4. We therefore need to show that there exists a draw that

enables all players mj ∈ M to win their respective 16L-player subtournaments with

exactly the players described if and only if the 3SAT instance is can be satisfied.
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Figure 3-9: Directed graph relating some of the players in choice gadget Gj in the case where L = 3.
All vertical arrows not shown in the graph point down, and all horizontal arrows not shown point
from right to left. If xj = True, then two players from the set {s1

xj
, s2

xj
, s3

xj
} and one player from

the set {s4
xj
, s5

xj
} will be unused in the resulting choice gadget subtournament and be used instead

in the clause gadget subtournaments. If xj = False, then two players from the set {s1
x̄j
, s2

x̄j
, s3

x̄j
}

and one player from the set {s4
x̄j
, s5

x̄j
} will be unused in the resulting choice gadget subtournament

and be used instead in the clause gadget subtournaments.

Lemma 3.5.3. (←): If the formula F is satisfied by an assignment ψ, then there

exists a draw such that m1 wins the tournament.

Proof. Suppose that an assignment ψ satisfies the formula F . For all j where gadget

Gj is a choice gadget, put all players from Gj∪Sj∪{mj} into the same subtournament

for the first dlogLe + 4 rounds, with an exception. If ψ(xj) = True, then exclude

L players from from Sxj
; if ψ(xj) = False, then exclude L players from Sx̄j

. By a

logical extension of one of the lemmas in [3], we see that each of these subtournaments

is really a binary tree of 4-round subtournaments in which 1 or 2 players from Sxj

(Sx̄j
) are excluded if ψ(xj) = True (ψ(xj) = False), and the tournament results

from round 4 onward depend on which players make it to round 4. It is clear to

see also that mj will only win the subtournament if the players excluded across the
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Figure 3-10: The 6-round subtournament for choice gadget j in the case where xj or x̄j appears
at most three times in F (L = 3) and xj = False. On the top is the subtournament consisting of
rounds 5 and 6 that allows mj to ultimately win the 6-round subtournament. In the middle is the
5-round subtournament that x1

j wins, and on the bottom is the 5-round subtournament that mj

wins.

subtournaments come from either Sxj
or Sx̄j

. Therefore, we can choose the draw

definitively so that mj wins the subtournament.

For every literal that evaluates to true, L players remain that are not part of the

choice gadget subtournament and can be beaten by every player associated with a

clause ci ∈ C that contains that literal. We know that each clause must evaluate to

true, and meaning at least one literal in the clause evaluates to true. For a player

c/g associated with a clause ci ∈ C, select one of the literals in ci that evaluates

to true. If xj ∈ ci and xj = True, assign one of the aforementioned L excluded

players from Sxj
to player c/g. Likewise, if x̄j ∈ ci and xj = False, assign one of the

aforementioned L excluded players from Sx̄j
to player c/g. To all garbage players,

assign any remaining player from the superset S. Extending the logic of the hardness
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Figure 3-11: Directed graph relating some of the players in choice gadget Gj in the case where
L = 7. All vertical arrows not shown in the graph point down, and all horizontal arrows not shown
point from right to left. If xj = True, then two players from the set {s1

xj
, s2

xj
, s3

xj
}, two players from

{s4
xj
, s5

xj
, s6

xj
}, two players from {s7

xj
, s8

xj
, s9

xj
} and one player from {s10

xj
, s11

xj
} will be unused in the

resulting choice gadget subtournament and be used instead in the clause gadget subtournaments.
If xj = False, then two players from the set {s1

x̄j
, s2

x̄j
, s3

x̄j
}, two players from {s4

x̄j
, s5

x̄j
, s6

x̄j
}, two

players from {s7
x̄j
, s8

x̄j
, s9

x̄j
} and one player from the set {s10

x̄j
, s11

x̄j
} will be unused in the resulting

choice gadget subtournament and be used instead in the clause gadget subtournaments.

proof in [3], we see that after the choice gadget subtournaments were constructed and

the remaining players were assigned to the clause/garbage gadget subtournaments, a

draw allowing mj to win the subtournament for every j has been found.

Lemma 3.5.4. (→): If there exists a draw such that m1 wins the tournament, then

there exists an assignment ψ that satisfies the formula F .

Proof. Suppose that we are given a draw such that m1 wins the tournament. We know
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Figure 3-12: Part of the 7-round subtournament for choice gadget j in the case where xj or x̄j appears
at most three times in F (L = 3) and xj = False. On the top is the subtournament consisting
of rounds 5 through 7 that allows mj to ultimately win the entire 7-round subtournament. In the
middle is the 5-round subtournament that mj wins, and on the bottom is the 5-round subtournament
that x̄1

j wins.

this means that all players mj ∈M won different dlogLe+ 4-round subtournaments

consisting exactly of the players described earlier. We know that if a player s∗j is

placed anywhere other than in the choice gadget subtournament for player mj, this

yields a contradiction because this means that another player in M would be beaten

by s∗j and fail to advance to round dlogLe + 4. Therefore, we have a clear bijection

between the players contained in the choice gadget subtournaments and the truth

assignment for F : ψ(xj) = True if mj’s choice gadget subtournament includes all

but L players of Sj, and ψ(xj) = False if mj’s choice gadget subtournament includes

all but L players of Sx̄j
. By a logical extension of the Aziz proof, we see that in order
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Figure 3-13: Continuation of the 7-round subtournament for choice gadget j described by Figure
3-12. On the top is the 5-round subtournament that x1

j wins, and on the bottom is the 5-round

subtournament that x2
j wins.

for player m` to win the subtournament associated with clause/garbage gadget G`

and clause ci, the subtournament must contain a player that c/g beats. This player

represents one of the literals contained in clause ci. If xj ∈ ci, and ψ(xj) = True,

then player c/g beats a player from set Sxj
. Likewise, if x̄j ∈ ci and ψ(xj) = False,

then player c/g beats a player from set Sx̄j
. This matching corresponds directly with

a satisfiable truth assignment ψ for F .

Therefore, 3SAT can be reduced directly to TFP in polynomial time.

We now analyze the size blowup of this reduction. The number of rounds in

each of the subtournaments won by players mj ∈ M required to isolate all players

m1, . . . ,mk so that they are the only ones left in the tournament is bounded from

below by dlogLe+4, creating a binary tree that recursively breaks down into 5-round

subtournaments that correspond to a literal appearing either once or twice. This

reduction ultimately adds 2dlogLe+4 < 2L ·16 nodes to each subtournament. Since the

number of rounds in the entire tournament ultimately goes up, the total number of
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additional nodes becomes 2(32) · |X| · L = 64L · |X|. We can assume that L <= |X|,

which means the number of additional nodes is O(|X|2). However, because we know

from Theorem 3.4.1 that we need to add O(|X|2) edges, from each of these nodes to

the others currently in the graph, the reduction blowup becomes O(|X|4).

3.6 Comparing the Direct and Indirect Reductions

to TFP

We now show that the above reduction is less time-efficient than reducing from 3SAT

to 3SAT2 to TFP.

Theorem 3.6.1. The size blowup created by reducing 3SAT to 3SAT2 to TFP is

tighter than the size blowup created by directly reducing 3SAT to TFP.

Proof. The reduction from 3SAT2 to TFP was given in section 3.3, and its size blowup

was given in section 3.4, so we only need to find the size blowup for the reduction

from 3SAT to 3SAT2. We first show how to reduce 3SAT to 3SAT2.

Lemma 3.6.2. There exists a polynomial-time reduction from 3SAT to 3SAT2.

Proof. Let φ be an instance of 3SAT with a set of literals {x} such that each x appears

k > 2 times in φ. Replace the first occurrence of x with a literal y1, the second by y2,

and so on, where y1, y2, . . . , yk are k new variables. Note that if the opposite literal x̄

also appeared k′ > 2 times in φ, we would replace each occurrence with a new literal

z so that z1, z2, . . . , zk′ are k′ new variables.

Now, we add to φ the expressions

(ȳ1 ∨ y2) ∧ (ȳ2 ∨ y3) ∧ · · · ∧ (ȳk−1 ∨ yk) ∧ (ȳk ∨ y1) ,

(z̄1 ∨ z2) ∧ ((z̄2 ∨ z3) ∧ · · · ∧ (z̄k′−1 ∨ zk′) ∧ (z̄k′ ∨ z1)

for x and x̄, respectively. Let φ′ be the result of modifying φ in this fashion for each

literal appearing more than twice. Clearly, φ′ has the desired properties of an instance
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of 3SAT2; however, φ′ must also be a satisfiable instance of 3SAT2 if and only if φ is

a satisfiable instance of 3SAT. This is true because for each literal x appearing k > 2

times in φ, the assignments of the additional variables y1, . . . , yk are the same as the

satisfying assignment of x. The expressions above only yield True if all k variables

have the same assignment (i.e. all True or all False). It is easy to see that at most

O(n) new literals and clauses are added to φ in order to create the 3SAT2 instance

φ′, where n is the number of literals in φ and each literal appears a constant number

of times.

The number of nodes required for the middle-man reduction becomes O(n) ·

O(n2) = O(n3), while the number of nodes required for the direct reduction is O(n4).

Therefore, it is more efficient to include 3SAT2 in the complete reduction.
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Chapter 4

Parameterized Complexity of

Deterministic TFP

4.1 Overview and Motivation

In this chapter, we analyze past work on the application of parameterized complexity

to TFP in the deterministic case, as defined in the previous chapter. In particular, we

give a more lucid algorithm that matches the tightest known bound on runtime for a

given parameter and discuss why a better runtime is currently unlikely to be found.

After a series of smaller publications [1] [6], one of the first comprehensive pub-

lished works on parameterized complexity appeared in 1999 [7]. But in the past

decade, the field has experienced a prodigious transformation into one of the richest

and most useful areas of theoretical computer science. In this branch of complexity

theory, the inherent difficulty of computational problems is measured with respect to

more than one parameter describing the input or output. This allows a finer, more

specific classification of NP-hard problems than before. It also motivates the design

of algorithms that have an efficient runtime if the parameters of a problem’s input

are relatively small, regardless of the input size; problems like this are known as fixed-

parameter tractable, defined below:
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Definition 4.1.1. Consider Σ∗, a set of all possible input strings that can be generated

using an alphabet Σ, and some decision problem A ⊆ Σ∗ with input instance x ∈ Σ∗

and parameter k. We say that A is fixed-parameter tractable (FPT) if there

exists an algorithm that decides whether or not x belongs to the set of “yes” or “accept”

instances of A in time f(k) · |x|O(1) for some computable function f .

Several NP-hard problems are indeed fixed-parameter tractable, such as MINIMUM

VERTEX COVER, LONGEST PATH, and DISJOINT TRIANGLES [9]. What makes

fixed-parameter tractability so attractive is that it precisely cleaves the computational

difficulty in the complexity contribution of the parameters so that it is obvious where

the congestion(s) in hardness are. For example, the runtime of an FPT algorithm for

A from our definition might demonstrat that the parameter k contributes a super-

exponential blowup in algorithmic runtime while the original size of the input |x|

contributes little blowup by comparison.

Parameters like k tend to arise naturally from the formal structure of the problem

in question. For example:

• In a parallel processing system, the runtime of an algorithm running on input

data of size n could be parameterized by setting k equal to the number of

processors in the system.

• In a database of size n, the time required to answer a query could be parame-

terized by having k represent the size of the query.

• Many game problems that ask whether a given player has a winning strategy

given a particular game, a set of players, and a set of rules are PSPACE-complete.

However, many are FPT when parameterized not just by the size n of the input

game but also by the number of possible moves k at each step.

The practical world is full of computational problems governed by all sorts of

parameters with a variety of bounds. Designing algorithms with runtimes such as

2k n or 2k poly(n) to solve these problems would be very useful because we could

then argue that a problem is solvable in a reasonable amount of time if k << n.
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4.2 Prior Work

We first must discuss the concept of a binomial arborescence and why it is relevant

to both TFP and our work. An example of how a seeding for a balanced knockout

tournament is translated into a labeled binomial arborescence is given in Figure 4-1.

Definition 4.2.1. A binomial arborescence T = (V (T ), E(T )) rooted at u ∈

V (T ) is defined recursively as follows:

• A single node u is a binomial arborescence rooted at u;

• If |V (T )| = 2i for some i > 0, then T is a binomial arborescence rooted at u

if (u, v) ∈ E(T ) for another v ∈ V (T ) such that Tv is a binomial arborescence

rooted at v of size 2i−1 and Tu = T Tv is a binomial arborescence rooted at u of

size 2i−1.

Furthermore, given a directed graph G = (V,E), T = (V (T ), E(T )) is a spanning

binomial arborescence for G if V (T ) = V , E(T ) ⊆ E, and T is a binomial

arborescence.

It is already known that TFP can be reduced to the problem of finding a spanning

binomial arborescence with a specific root. [24] demonstrated that given a balanced

knockout tournament G with favorite player v∗ ∈ V (G), there exists a seeding of the

vertices in G that results in a victory for v∗ if and only if G has a spanning binomial

arborescence rooted at v∗. For the rest of this chapter, we will be investigating TFP

using this connection between finding a winning seeding for v∗ and spanning binomial

arborescences.

The fastest FPT algorithm for solving TFP runs in time 2O(k log k)nO(1) where n is

the number of players and k is the size of the minimal feedback arc set [12]. Recall

that in a directed graph G = (V,E), a subset F (E) ⊆ E is a minimal feedback arc set

if and only if the tournament obtained after reversing the arcs in F (E) is acyclic. This

set can be found in time 2O(
√
k)nO(1) [8] [16]. The algorithm for solving TFP begins by

guessing a template tree that consists of all possible ways to place in a blank binomial

arborescence the nodes in the feedback vertex set F (V ), which is the set of vertices

65



v∗

v∗

1

1 2

v∗

3 v∗

6

6

5 6

7

7 8

v∗

3 1

2

6

5 7

8

Figure 4-1: A balanced knockout tournament with n = 8 players and v∗ = 4 with the results by
round displayed as a binary tree (left) and a binomial arborescence (right).

adjacent to arcs in F (E). There are O((log n)k) = 2O(k log k) different permutations

of binomial arborescences to iterate over. Once a guessed template has been verified

as a valid partial labeling of a binomial arborescence rooted at the favorite player

according to the dictations of the input directed graph, the algorithm iterates over

the paths and subtrees not already determined by the guess and fills them up in a

greedy fashion.

In order to understand the basics of this algorithm, as well as why the one we give

later on in section 4.4 is simpler, we must first understand the relationship between

a labeled spanning binomial arborescence and a ”template” (as it is called in [12]).

Definition 4.2.2. (LCA closure): For a rooted tree T and a subset S ⊆ V (T ),

the least common ancestor-closure (LCA-closure) LCA(S) is obtained by the

following process:

1. Set S ′ = S.

2. While there are still vertices x, y ∈ S ′ whose least-common ancestor w in T is

not in S, add w to S ′.

3. Finally, when this process is complete, output S ′ = LCA(S). Note that LCA(S) ≤

2|S|.

Having defined a least common ancestor-closure, which is crucial to understanding

how a template is generated from a binomial arborescence, we restate the formal

definition of a template and the procedure by which a binomial arborescence T is
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dissected and altered in order to create a template given a subset F of the nodes in

the arborescence.

Definition 4.2.3. (Template Trees): Let T be a spanning binomial arborescence

rooted at v∗, let F ⊆ V (T ), and let VF be the set of vertices adjacent to the arcs in F

(a.k.a. the feedback vertex set). We construct a template tree T ′ of F from T :

1. Set T ′ = T .

2. For each u ∈ LCA(F ), delete from T ′ all vertices that do not lie on any of the

paths in T ′ from v∗ to u.

3. While there there is still a vertex u ∈ V (T ′) \ LCA(F ) with exactly one in-

neighbor v and exactly one out-neighbor w, delete u from T ′ and replace it and

the arcs (v, u) and (u,w) with the arc (v, w).

4. Delete the labels of all nodes in T ′ except for those of the vertices in F .

5. The resulting tree T ′ is a template tree of F .

A given tree T ′ is a template tree of F if it is a template tree of F in at least one

spanning binomial arborescence T rooted at v∗.

Figures 4-2 and 4-3 give an example of how the a template T ′ of F (V )∪{v∗} might

be generated from a spanning binomial arborescence T of 16 nodes, related to each

other by a directed graph G = (V,E), with root v∗ and F (V ) = {v2, v8, v10, v13, v15}.

We now describe the intuition for this algorithm. Let (G, v∗, k) be an accepted in-

stance of TFP, meaning that there exists a spanning binomial arborescence T rooted

at v∗. First, iterate over all possible template trees of F (V ) ∪ {v∗} in T . The total

number of template trees to check is kO(k), and this superset of possible trees enumer-

ated in time kO(k). In addition to guessing a template T ′ that can be generated from

the arborescence T (which we do not know), we also have to guess the modifications

that were made to it in order to turn T into T ′. This is done in two ways:

1. For each arc (u, v) ∈ E(T ′), we guess all possible ` ∈ {0, · · · , log n}. ` represents

the number of arcs that were removed from the path in T from u to v.
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Figure 4-2: On the left is the original spanning binomial arborescence T ′ = T rooted at v∗. The
blue vertices belong to the set F (V )∪{v∗}, the pink vertex v1 belongs to the set LCA(F (V )∪{v∗})\
(F (V ) ∪ {v∗}) whose label is removed in Step 4 of the template-generating process, the orange
vertices belong to the set of vertices removed from T ′ in Step 2, and the green vertices belong to
the set of vertices removed from T ′ in Step 3. On the right is tree T ′ after the orange vertices have
been removed, in completion of Step 2 in the template-generating process.

2. For each vertex u ∈ F (V ) ∪ {v∗}, we guess all possible m ∈ {20, 21, · · · , 2logn}.

m represents the size of the subtree rooted at u in T .

The process of guessing a valid template takes time 2O(k log k)nO(1). Each guess is

then checked to see if a binomial arborescence rooted at v∗ that represents a win-

ning seeding could be constructed from the guessed template. This verification takes

polynomial time, so these first two stages are completed in time 2O(k log k)nO(1).

As soon as a template tree T ′ of F (V ) ∪ v∗ in T is found, we greedily fill in the

missing nodes and arcs, starting at the top of T ′ and moving downward. First, the

missing arcs between paths are restored, reversing Step 3 of the template-building

process described in the definition. Then, the remaining missing nodes are restored,

reversing Step 2 of the process. Both of these restorative steps are done in polynomial

time. The result is a spanning binomial arborescence rooted at v∗.

The runtime blowup of this algorithm comes from the first stage, when we have to

enumerate all possible permutations of the set F (V ) ∪ {v∗} in the binomial arbores-

cence. Once a valid labeling of these nodes in the arborescence has been found, the

remaining nodes can be labeled efficiently.
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Figure 4-3: On the left is tree T ′ after the green nodes have been removed, in completion of Step 3
in the template-generating process. On the right is tree T ′ after the the pink vertex’s label has been
deleted, in completion of Step 4 in the template-generating process. The result is the new template
tree T ′ of F (V ) ∪ {v∗} created from arborescence T .

4.3 Towards a Lower Parameterized Complexity

An FPT algorithm for solving TFP that runs in time 2O(k)nO(1) would be much more

attractive. At first glance, it seems possible that we could use a graph problem

with some parameter k that can be solved in this runtime to come up with such an

algorithm. One work that was investigated to see if this was possible is Alon et al.

[2], which presented efficient, FPT algorithms for finding simple paths and cycles in

graphs using the color-coding method. Suppose we have a graph G = (V,E) with a

random coloring of the vertices of G with k colors. A path in G is said to be colorful

if each vertex on it is assigned a distinct color. A colorful path in G of length k can

be found in 2O(k) · |E| worst-case time. Similarly, given a directed or undirected forest

H on k vertices and a graph G = (V,E), a subgraph of G isomorphic to H, if one

exists, can be found in 2O(k) · |E| expected time in the directed case, and in 2O(k) · |V |

expected time in the undirected case.

It is not hard to see that the binomial arborescence and the tournament graph

given in Figure 4-1 are isomorphic to each other. Using this fact, several attempts

were made to reduce the problem of finding a spanning binomial arborescence rooted

at the node representing our favorite player to the problem of finding a subgraph of a

graph G isomorphic to a directed forest H. More specifically, we attempted to reduce

the problem of finding a valid labeling of the nodes F (V ) ∪ {v∗} in the arborescence

to the color-coding problem, where the H is the forest denoted by the edges in the
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tournament graph T connecting the vertices of F (V ) ∪ {v∗}. The number of colors

used k′ would be equal to O(k) where k is the size of the feedback arc set, and

|F (V )| ≤ 2k. This way, the parameterized complexity of finding a valid enumeration

would be tightened to 2O(k)nO(1) rather than 2O(k log k)nO(1).

However, the binomial arborescence rooted at v∗ representing a winning seeding

is constructed with the consideration of the order of the vertices in the arborescence.

That is, in order to be correct, the labels must be added so that each successive level

and/or subtree can still have a valid labeling. Verifying the correctness of a guessed

labeling of F (V ) ∪ {v∗} in the blank arborescence can be done in polynomial time,

which is optimal. The decisions made by the algorithms presented in Alon et al. rely

only on the vertices having distinct colors, regardless of their ordering or arrangement

in the input graph [2]. The necessity of considering the ordering of nodes in the

graph when labeling F (V ) ∪ {v∗} is a feature of TFP whose additional intricacy and

complexity is incompatible with those algorithms. As an analogy, recall that a single

combination (n,m) indifferent to its elements’ ordering can be broken down into a

series of permutations whose union creates that combination. Attempting to represent

a single one of those permutations with some group of combinations is already difficult,

but the complexity of representing an exponential number of permutations in this

way is even harder, and completely contradicts what we attempted to do: tighten the

hardness lower bound for finding the correct permutation from 2O(k log k)nO(1) down

to 2O(k)nO(1).

We investigated other publications that gave FPT algorithms for graph problems

that were parameterized by the size of the input graph’s feedback arc set. The

problems included finding k-cuts of graphs, finding pathwidth, and finding the optimal

linear arrangement of the graph’s vertices. Some of the algorithms investigated had

runtimes that were slower than 2O(k)nO(1) [11] [21]. In the cases where the algorithms

were fast enough, we attempted to reduce TFP to the problem(s) being investigated in

the publication, but again the aforementioned incompatibility of ignoring the ordering

reared its head [4] [10].

It is still possible that a parameterized algorithm with runtime 2O(k)nO(1) can be
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found for TFP, with k equal to the size of the feedback arc set in the input tournament

graph. However, we can conclude from our investigations that this algorithm must cut

down the number of guessed arrangements of the vertices that comprise F (V )∪{v∗} in

the arborescence dramatically. Furthermore, if this algorithm relies upon a reduction

from the problem of finding a valid arrangement of those nodes to another graph

problem (which may or may not be parameterized according to the size of the feedback

arc set), the latter problem and the algorithm that solves it must be compatible with

TFP’s intricate reliance upon permutations and ordering in the binomial arborescence.

The FPT algorithm given in the previous section makes the process of finding a correct

permutation even more complicated by guessing a correct template, rather than the

positions of the nodes in F (V ) ∪ {v∗} in the arborescence, but without reducing the

complexity of this guessing stage. It would be advisable for a future algorithm to

avoid unnecessary changes such as this.

4.4 Our FPT Algorithm

We give a simpler FPT algorithm for TFP with runtime 2O(k log k)nO(1), where n is the

number of players and k is the size of the minimal feedback arc set. As in Gupta et.

al [12], our input is a favorite player v∗, and a directed graph G = (V,E). We will

also assume that the feedback arc set F (E) (and consequently the feedback vertex

set F (V )) is known. First, the algorithm will iterate over all possible arrangements

of the feedback vertex set F (V ) in the blank binomial arborescence B. However,

instead of deleting blank nodes and formulating these permutations as ”templates,”

we will instead treat them as spanning binomial arborescences over all n nodes in G

with only the positions of the vertices v ∈ F (V ) ∪ {v∗} labeled and with v∗ at the

root. There are three combinatorial pieces that determine the number of iterations:

• Which arcs in F (E) are included. There are k to choose from, so there is a

total of 2k possibilities.

• For each arc (u, v) ∈ F , guess an integer in {0, . . . , log n} representing the
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distance between u and v in B. We enumerate over all possible lengths, yielding

a total of (log n2k) · 2k = 2k log k iterations.

• For each vertex v ∈ F (V ), guess the size of the subtree rooted at v in B, ranging

from {20, . . . , 2logn}. This also yields a total of 2k log k iterations.

Given a guessed partial labeling S of a blank spanning binomial arborescence B

with labeled nodes V (S) = F (V ) ∪ {v∗} and edges E(S), a favorite player v∗, F (V ),

and the original tournament graph G = (V,E), we must verify whether or not the

labeling is valid (i.e. whether nor not it can yield a winning binomial arborescence).

We do this using the procedure Verify.

Algorithm 1 Verify(S, F (V ), v∗)

1: i = 0, paths = {}
2: for w ∈ out(v∗) do
3: if w /∈ F (V ) then
4: add (v∗, w) to paths
5: end if
6: if w ∈ F (V ) and (v∗, w) ∈ E(S) then
7: add (v∗, w) to paths
8: end if
9: end for

10: for i ∈ [1, log n] do
11: newPaths = {}
12: for path ∈ paths with terminus u ∈ V do
13: for w ∈ out(u) do
14: if w /∈ F (V ) then
15: path = path+ (u,w)
16: add path to newPaths
17: end if
18: if w ∈ F (V ) and path is existable in S with w at distance i from v∗ then
19: path = path+ (u,w)
20: add path to newPaths
21: end if
22: end for
23: end for
24: paths = newPaths
25: end for
26: ACCEPT if all vertices in V are visited, REJECT otherwise.

This verification algorithm runs in time poly(n). Once we have guessed a labeling

S and the verification algorithm accepts the guess as a feasible partial labeling of the

spanning binomial arborescence, we fill in the at most n− k remaining blank nodes.

This too can be done in polynomial time not by greedily filling in a more complicated
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template but instead by setting boundaries on what vertices can go where, and then

filling in the blank nodes starting with the top of the tree and slowly moving down.

Figure 4-4: Spanning binomial arborescence rooted at i and labeled only with a guess for F (V ) =
{i, j, k}. The blue-green nodes are labeled with a guessed permutation of the nodes of F (V ), and
the off-white nodes are at present unlabeled.

Figure 4-5: Spanning binomial arborescence rooted at i. The blue-green nodes are labeled with
i, j, k ∈ F (V ), and the off-white nodes are labeled with the bounds on topological rank that the
vertex placed there must satisfy.

Figure 4-4 shows an 8-node spanning binomial arborescence rooted at i. We

will treat this arborescence as a subtree of a valid partial labeling S that includes

the nodes i, j, k ∈ F (V ). The remaining nodes are blank. To understand how the

interval method of labeling a spanning binomial arborescence works, consider that

all vertices in V are labeled 1 to n in a topological ordering where if u < v, u beats

v. This is represented in the input tournament graph by an edge (u, v) ∈ E. The

vertices in F (V ) violate this ordering because they each have at least one edge in the
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Figure 4-6: Possible correct labeling of a spanning binomial arborescence rooted at i with 1, 4, 6 ∈
F (V ).

feedback arc set, and if F (E) were removed from E, G would be acylic. Therefore, the

remaining vertices in V \F (V ) can all be placed in S according to the dictations of this

topological ordering as well as the intervals created by where the nodes in F (V ) have

already been placed. Figure 4-5 shows an 8-node spanning binomial arborescence with

i, j, k ∈ F (V ) labeled and the remaining nodes marked according to which intervals

their topological ranking should fall in. A node labeled > i can only be labeled with

available vertices v ∈ V such that σ(v) > i. For example, if we let i = 1, j = 4, k = 6,

then a possible correct winning labeling for i that satisfies the bounds on topological

rank set in Figure 4-5 is given by Figure 4-6.

We now give the main algorithm CompleteSBA for labeling the off-white nodes

using the topological ranking σ, the feasible partial labeling S, and G. Upon the

algorithm’s completion, B is completely and correctly labeled with v∗ at the root.

We also give the helper algorithm UpdateBounds for updating the upper and lower

bounds of the available intervals for the unlabeled nodes in B S, where B is the entire

arborescence and S is the set of labeled nodes. We repeatedly call this function as B

is labeled from the top down.

To show CompleteSBA in action, consider a graph G = (V,E), a topological

ranking σ(vi) = i, and a binomial arborescence B with a feasible partial labeling

S = F (V ) ∪ {v∗} where n = 16, v∗ = v2 and F (V ) = {v1, v8, v10, v13, v15}. Note that

for all pairs vi, vj with i < j whose edge is not in feedback arc set, (i, j) ∈ E. The
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Algorithm 2 CompleteSBA(B,G, F (V ), σ, v∗)

1: L = min (V \ (V (F ) ∪ {v∗}))
2: S = V (F ) ∪ {v∗}
3: i = 1
4: UpdateBounds(B,G, S, σ, v∗, L)
5: while B \ S 6= ∅ and i ≤ log n do
6: for u ∈ B[i] where B[i] is the set of unlabeled nodes in B at level i, sorted by increasing

interval size do
7: if ∃ node v ∈ B \ S with interval range R such that |R| = 1 then
8: Label v with r ∈ R.
9: S = S ∪ {v}

10: UpdateBounds(B,G, S, σ, v∗, L)
11: end if
12: Label u with the smallest σ(j) > L
13: S = S ∪ {v}
14: L = L+ 1
15: end for
16: UpdateBounds(B,G, S, σ, v∗, L)
17: i = i+ 1
18: end while
19:
20: return (B,S)

Algorithm 3 UpdateBounds(B,G, S, σ, v∗, L)

1: for unlabeled u ∈ B \ S do
2: if in(u) > L and in(u) ∈ S then
3: add the lower bound (L, ·) to u
4: else
5: add the lower bound (in(u), ·) to u
6: end if
7: if ∃v ∈ out(u) such that v ∈ S then
8: add the upper bound (·, v) to u
9: else

10: add the upper bound (·, n) to u
11: end if
12: end for
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algorithm proceeds in Figures 4-7 through 4-12.

Figure 4-7: Spanning binomial arborescence B rooted at v∗ = v2. The blue-green nodes are labeled
with F (V ) = {v1, v8, v10, v13, v15}, and the off-white nodes are labeled with the bounds on topological
rank i = σ(vi). At this point L = 2.

Figure 4-8: Partial labeling of B resulting from the iteration i = 1, filling in the nodes at the first
level. Now S = {v1, v2, v3, v4, v8, v10, v13, v15} and L = 4.

It is not hard to see that each call to UpdateBounds is completed in linear time. The

number of unfilled nodes in B at level i is bounded from above by
(

logn
i

)
. Because

v∗ has already been labeled at the root, we can set the boundary i ∈ [1, log n].

UpdateBound is called once at the end of each iteration. During each visit, we check

to see if there exists a node in B \ S with an interval size equal to 1 (meaning there

exists only one feasible label for it). Therefore, each visit to an unlabeled node also
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Figure 4-9: Update of the lower bounds in the remaining nodes in B \ S given the the new labels of
Figure 4-8.

Figure 4-10: Partial labeling of B resulting from the iteration i = 2, filling in the nodes at the second
level. Now S = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} and L = 11.

takes linear time. So the total runtime of CompleteSBA is

logn∑
i=1

((
log n

i

)
·O(n) +O(n)

)
= O(n2) +O(n log n) = O(n2)

The total runtime of our algorithm for solving TFP is therefore 2k log knO(1), match-

ing the runtime of the algorithm given by [12], but with a much cleaner and less

convoluted implementation. Because the runtime is exponential in our parameter k

and polynomial in the size of the input n, it is also fixed-parameter tractable.
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Figure 4-11: Update of the lower bounds in the remaining nodes in B \ S given the new labels of
Figure 4-10.

Figure 4-12: Complete correct labeling for B,S at the conclusion of CompleteSBA. Because the lone
node at the level i = 4 has already been labeled by v15 ∈ F (V ), the algorithm will terminate as soon
as all of the nodes at level i = 3 have been assigned labels because B \ S = ∅.
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Chapter 5

Conclusions and Future Work

This thesis examined the problem of fixing tournaments using several techniques.

In this section, we summarize some specific directions and open problems for future

work. We demonstrated that even a knockout tournament described by a monotonic

probabilistic matrix can be fixed with the addition of bribery, yielding an NP-complete

problem from an open problem. However, the question of whether or not it is NP-hard

to fix a tournament in the monotonic case without the aid of bribery still remains

open and acute. Worthwhile future work would include finding a polynomial-time

reduction to this problem from a known NP-hard problem. Another possible direc-

tion would be to parameterize it according to one or more parameters that quantify

the monotonicity of the matrix P since it seems that the inclusion of monotonicity

specifically encumbers the establishment of TFP’s complexity.

We also showed that a knockout tournament described by the Condorcet random

model will almost always have an optimally small set of top players that can be bribed

so that a winning seeding can be found efficiently for any player in the tournament.

Having a small set of players whom the organizer will always be able to bribe that

is (1) independent of the precise structural details of the tournament graph, which

are subject to the noise of the Condorcet model, and (2) available before any win-

ning seedings have been found is new and compelling. Possible future work on this

idea would include applying it to deterministic tournaments with more complicated

structures or parameterizing the complexity of various bribery problems with respect
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to the size of this set. It would also be interesting to apply this idea to knockout

tournaments described by probabilistic matrices rather than deterministic ones and

see how the number of players needed in the set changes.

This thesis also examined the implications of the known NP-completeness of de-

terministic TFP, beginning with attempts to reduce other NP-complete problems to

it. Possible future work would be to find other Boolean decision problems with con-

straints similar to the one imposed on 3SAT2 that ultimately allowed it to be reduced

successfully to TFP in polynomial time. I considered investigating whether or not

HAMPATH could be reduced to TFP, but I suspect that the relationship between

vertices and edges in a correct instance of HAMPATH would cause a massive blowup

in the reduction size to the point where a poly-time NP-hardness reduction would

be infeasible. Possible future work would include seeing whether or not this is the

case for other NP-complete problems. The most attractive problems would have an

inherent language restriction comparable to that of 3SAT2. As we have seen, restrict-

ing each literal in a satisfiable instance of 3SAT2 to appear at most twice allowed us

to keep the tournament graph constructed from the instance to polynomial size. It

follows that problems that have similarly strict features would be more likely to yield

efficient reductions to TFP.

Finally, this thesis examined the application of parameterized complexity to deter-

ministic TFP by attempting to lower the tightest known bound on TFP’s complexity

using the size of the minimal feedback arc set as a parameter. Possible future work

includes finding a more efficient way to iterate over the possible partial labelings of

spanning binomial arborescences, since this is what causes the running time of the

iterative stage (and therefore the entirety) of both the original algorithm [12] and the

simpler algorithm presented in this thesis to skyrocket. If the number of iterations

could be reduced from 2O(k log k) to 2O(k), this would yield a much better runtime of

2O(k)nO(1). Another future direction would be choosing a different property of the in-

put tournament graph as a parameter and establishing a (possibly) tighter and more

attractive lower bound that way.
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